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Abstract A fast, robust and scalable methodology to

examine, quantify, and visualize climate patterns and their

relationships is proposed. It is based on a set of notions,

algorithms and metrics used in the study of graphs, referred

to as complex network analysis. The goals of this approach

are to explain known climate phenomena in terms of an

underlying network structure and to uncover regional and

global linkages in the climate system, while comparing

general circulation models outputs with observations. The

proposed method is based on a two-layer network repre-

sentation. At the first layer, gridded climate data are used to

identify ‘‘areas’’, i.e., geographical regions that are highly

homogeneous in terms of the given climate variable. At the

second layer, the identified areas are interconnected with

links of varying strength, forming a global climate net-

work. This paper describes the climate network inference

and related network metrics, and compares network prop-

erties for different sea surface temperature reanalyses and

precipitation data sets, and for a small sample of CMIP5

outputs.

Keywords Network analysis � Spatial weighted networks �
Model validation � Model comparison � Teleconnections

1 Introduction

Network analysis refers to a set of metrics, modeling tools

and algorithms commonly used in the study of complex

systems. It merges ideas from graph theory, statistical

physics, sociology and computer science, and its main

premise is that the underlying topology or network struc-

ture of a system has a strong impact on its dynamics and

evolution (Newman et al. 2006). As such it constitutes a

powerful tool to investigate local and non-local statistical

interactions.

The progress made in this field has led to its broad

application; many real world systems are modeled as an

ensemble of distinct elements that are associated via a

complex set of connections. In some systems, referred to as

structural networks, the underlying network structure is

obvious (e.g. Internet routers as nodes, cables between

routers as edges). In others, the underlying mechanisms for

remote connections between different subsystems are

unknown a priori (e.g. social networks, or the climate

system); still, their effects can be mapped into a functional

network. An extensive bibliography for applications of

network analysis can be found in Newman (2010).

By quantifying statistical interactions, network analysis

provides a powerful framework to validate climate models

and investigate teleconnections, assessing their strength,

range, and impact on the climate system. The intention is to

uncover relations in the climate system that are not (or not

fully) captured by more traditional methodologies used in

climate science (Dijkstra 2005; Corti et al. 1997; Abramov

and Majda 2009; Ghil et al. 2002; Ghil and Vautard 1991;
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Forest et al. 2002; Allen and Smith 1994; Andronova and

Schlesinger 2001), and to explain known climate phe-

nomena in terms of the underlying network’s structure and

metrics.

Introductions to the application of network analysis in

climate science are presented in Steinhaeuser et al. (2010)

and Tsonis et al. (2006). We can classify the prior work in

this area in three distinct approaches. A first approach

assigns known climate indices as the nodes of the network

(Tsonis et al. 2007; Swanson et al. 2009; Wang et al.

2009). By studying the collective behavior of these nodes,

it has been possible to investigate their relative role over

time and to interpret climate shifts in terms of changes in

their relative strength. This approach is obviously sensitive

to the initial selection of network nodes, and it cannot be

used to discover new climate phenomena involving other

regions.

A second, and more common, approach represents the

nodes of the climate network by grid cells in the given

climate field. Specifically, each grid cell is represented by a

node, and edges between nodes correspond to statistically

significant relations based on linear or nonlinear correlation

metrics (Tsonis and Roebber 2004; Donges et al. 2009b).

In this approach, it is common to prune edges whose sta-

tistical significance is below a certain threshold, and to

assume that all remaining edges are equally ‘‘strong’’,

resulting in an unweighted network (Tsonis et al. 2008;

Donges et al. 2009b; Steinhaeuser et al. 2009). This

approach has been used to study teleconnections, uncover

interesting global-scale patterns responsible for the transfer

of energy throughout the oceans, and analyze relations

between different variables in the atmosphere (Tsonis et al.

2008; Tsonis and Swanson 2008; Yamasaki et al. 2008;

Donges et al. 2009a, 2011). A limitation of this approach is

that it results in a very large number of network nodes (all

cells in a spatial grid), and these nodes cannot be used to

describe parsimoniously any identified climate phenomena.

The third approach focuses on the community structure

of the underlying network (Newman and Girvan 2004). A

community is a collection of nodes that are highly inter-

connected, while having much fewer interactions with the

rest of the network. Communities can serve as informative

predictors in lieu of climate indices (Tsonis et al. 2010;

Steinhaeuser et al. 2011a; Pelan et al. 2011), while their

evolution and stability has also received some attention

(Steinhaeuser et al. 2009, 2011b). Clustering techniques

have also been proposed to discover significant geograph-

ical regions in a given climate field (again, in lieu of cli-

mate indices) (Steinbach and Tan 2003), and to identify

dipoles (i.e., two regions whose anomalies are anti-corre-

lated) and to evaluate their significance (Kawale et al.

2011, 2012). These community-based or clustering tech-

niques, however, do not infer a network of teleconnections

between different communities (clusters), and they do not

quantify the intensity of teleconnections between geo-

graphically separated regions within the same community

(cluster).

In this work, we propose a new method to apply network

analysis to climate science. We first apply a novel network-

based clustering method to group the initial set of grid cells

in ‘‘areas’’, i.e., in geographical regions that are highly

homogeneous in terms of the underlying climate variable.

These areas represent the nodes of the inferred network.

Links between areas (i.e., the edges of the network) rep-

resent non-local dependencies between different regions

over a certain time period. These inter-area links are

weighted, and their magnitude depends on both the

cumulative anomaly of each area and the cross-correlation

between the two cumulative anomalies. The similarity of

our method to previous community/clustering techniques is

that nodes are endogenously determined during the data

analysis process. The main differences are that each node

corresponds to a distinct geographical region, and these

nodes form a weighted network based on the connection

intensity that is inferred for each pair of nodes. In other

words, the proposed method decouples the identification of

the geographical boundary of each network node from the

estimation of the connection intensity between different

regions.

The proposed method requires a single parameter s,

which determines the minimum degree of homogeneity

between cells of the same area. The method is robust to

additive noise, changes in the resolution of the given data

set, the selection of the correlation metric, and variations in

s. The resulting climate network can be applied, regionally

or globally, to identify and quantify relationships between

climate areas (or teleconnections) and their representation

in models, and to investigate climate variability and shifts.

Finally, the proposed method can be extended to investi-

gate interactions between different climate variables.

The rest of this paper is organized as follows: In Sect. 2

we introduce the data sets analyzed in this work. We

describe the climate network construction algorithm and

the network analysis metrics in Sects. 3 and 4, respectively.

The robustness of the climate network inference process is

examined in Sect. 5. Applications of the proposed method

to a suite of reanalyses and model data sets are presented in

Sect. 6. A discussion of the main outcome of this work

concludes the paper.

2 Data sets

In this section we briefly describe the data sets that are used

in the rest of this paper. For sea surface temperatures

(SSTs), we construct and compare networks based on the
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HadISST (Rayner et al. 2003), the ERSST-V3 (Smith et al.

2008) and the NCEP/NCAR (Kalnay et al. 1996) reanaly-

ses. For precipitation, we rely on CMAP merged data (Xie

and Arkin 1997) and ERA-Interim reanalysis (Dee et al.

2011). We also analyze the SST fields generated by two

coupled general circulation models chosen from the

CMIP5 archive: the NASA GISS-E2H (Hansen et al. 2002)

and the Hadley Center HadCM3 (Gordon et al. 2000). We

select randomly two runs of each model from the ‘‘his-

torical run’’ ensembles (Taylor et al. 2012).

Because the quality of the measurements contributing to

the SST reanalyses deteriorates as we move to higher lati-

tudes, we only consider the latitudinal range of [60�N; 60�S],

avoiding sea-ice covered regions. Also, we mostly focus on

the period 1979–2005; in the case of HadISST reanalysis, we

contrast with the network characteristics during the

1950–1976 interval. Due to space constraints, results are

only shown for the boreal winter season (December to Feb-

ruary, DJF). When not specified otherwise, all SST data are

interpolated (using bilinear interpolation) to the minimum

common spatial resolution across all data sets (2� 9 2.5�);

for precipitation the resolution is 2.5� 9 2.5�.

All climate networks are constructed from detrended

anomalies derived from monthly averages of the corre-

sponding climate field. The detrending is done using linear

regression and the anomalies are computed after removing

the annual cycle.

3 Climate network construction

The network construction process consists of three steps.

First, we compute the ‘‘cell-level network’’ from the detr-

ended anomaly time series of each cell in the spatial grid.

Second, we apply a novel area identification algorithm on

the cell-level network to identify the nodes of the final

‘‘area-level network’’; an area here represents a geographic

region that is highly homogeneous in terms of the given

climate field. Third, we compute the weight of the edges

between areas, roughly corresponding to teleconnections,

based on the covariance of the cumulative anomalies of the

two corresponding areas. The following network con-

struction method requires a single parameter, s, which

determines the minimum degree of homogeneity between

cells of the same area. In the following we describe each

step in more detail.

3.1 Cell-level network

Consider a climate field x(t) defined on a finite number of

cells in a given spatial grid. The i’th vector of the climate

field is a time series xi(t) of detrended anomalies in cell i.

The length of each time series is denoted by T. We first

compute Pearson’s cross-correlation r(xi, xj)
1 between the

time series xi(t) and xj(t) for every pair of cells i and j. We

calculate the correlations at zero-lag, assuming that the

physical processes linking different cells result from

atmospheric wave dynamics and are fast compared to the

1-month averaging time scale of the input time series.

Considering time-lagged correlations is beyond the scope

of this paper. Instead of using Pearson’s correlation, other

correlation metrics could be adopted; in Sect. 5.4 we

examine the differences in the resulting network using a

rank-based correlation metric.

Most of the prior work on climate network analysis

applies a cutoff threshold on the correlations r(xi, xj) to

prune insignificant values and construct a binary (i.e.,

unweighted) network between cells; for a recent review see

Steinhaeuser et al. (2010). Figure 1 shows correlation

distributions for four SST reanalyses; note that there is no

natural cutoff point to separate significant correlations from

noise. We have experimented with methods that first prune

insignificant correlations and then construct unweighted

networks, and observed that the final area-level network is

sensitive to the significance level at which correlations are

pruned. Such sensitivity complicates any attempt to make

quantitative comparisons between networks constructed

from different data sets (for example networks from

observations versus models).

For this reason, in the following we present a method

that considers all pair-wise cell correlations, without any

pruning. Thus, the cell-level network is a complete and

weighted graph, meaning that every pair of cells is con-

nected but with weighted edges between -1 and 1. This

cell-level network is the input to the area identification

algorithm, described next.
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Fig. 1 Empirical cumulative distribution functions (CDF) of corre-

lations for the HadISST reanalysis during the 1950–1976 and

1979–2005 periods, and for the ERSST-V3 and NCEP reanalyses

during the 1979–2005 period

1 Unless specified otherwise, the term ‘‘correlation’’ will be used to

denote Pearson’s cross-correlation metric between two time series.
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3.2 Identification of climate areas

A central concept in the proposed method is that of a cli-

mate area, or simply area. Informally, an area A represents

a geographic region that is highly homogeneous in terms of

the climate field x(t).

In more detail, we define as neighbors of a grid cell i the

four adjacent cells of i, and as path a sequence of cells such

that each pair of successive cells are neighbors. An area

A is a set of cells satisfying three conditions:

1. A includes at least two cells.

2. The cells in A form a connected geographic region,

i.e., there is a path within A connecting each cell of

A to every other cell of that area.

3. The average correlation between all cells in A is

greater than a given threshold s,
P

i6¼j2A rðxi; xjÞ
jAj � ðjAj � 1Þ [ s ð1Þ

where |A| denotes the number of cells in area A.

The parameter s determines the minimum degree of

homogeneity that is required within an area. A heuristic for

the selection of s is presented in ‘‘Appendix 1’’; we use that

heuristic in the rest of this paper.

For the climate network to convey information in the

most parsimonious way, the number of identified climate

areas should be minimized. We have shown elsewhere that

this computational problem is NP-Complete, meaning that

there exists no efficient way to solve it in practice (Fountalis

et al. 2013). Consequently, we have designed an algorithm

that aims to minimize the number of areas heuristically,

based on a so called ‘‘greedy’’ approach (Cormen et al.

2001). The algorithm consists of two parts. First, it identi-

fies a set of areas; secondly it merges some of those areas

together as long as they satisfy the previous three area

constraints. A pseudocode describing the algorithm is given

in ‘‘Appendix 2’’, while the actual software is available

at http://www.cc.gatech.edu/*dovrolis/ClimateNets/. An

example of the area identification process applied to a

synthetic grid is illustrated in Fig. 2.

The identification part of the algorithm produces areas

that are geographically connected by always expanding an

area through neighboring cells. Additionally, the algorithm

attempts to identify the largest (in terms of number of cells)

area in each iteration by selecting, in every expansion

step, the neighboring cell that has the highest average

correlation with existing cells in that area. The expectation

is that this greedy approach allows the area to expand to as

many cells as possible, subject to the constraint that the

average correlation in the area should be more than s. It is

easy to see that an identified area satisfies the condition

given by Eq. 1.

Within the set of areas V identified by the first part of the

algorithm, it is possible to find some areas that can be

merged further, and still satisfy the previous three con-

straints. Specifically, we say that two areas Ai and Aj can be

merged into a new area Ak = Ai [ Aj if Ai and Aj have at

least one pair of geographically adjacent cells and the

average correlation of cells in Ak is greater than s. The

second part of the algorithm, therefore, attempts to merge

as many areas as possible (see ‘‘Appendix 2’’).

Figure 3 shows the identified areas before merging (i.e.,

after Part-1 in ‘‘Appendix 2’’) and after merging (i.e., after

Part-2 in ‘‘Appendix 2’’) for the HadISST reanalysis. Fig-

ure 3c shows the distribution of area sizes (in number of

cells) before and after merging. Area merging decreases

substantially the number of small areas (the percentage of

areas with less than 10 cells in this example drops from 46

to 10 %).

The identified areas represent the nodes of the inferred

climate network. We refer to this network as ‘‘area-level

network’’ to distinguish it from the underlying cell-level

network.

3.3 Links between areas

Links (or edges) between areas identify non-local relations

and can be considered a proxy for climate teleconnections.

To quantify the weight of these links, we first compute for

each area Ak the cumulative anomaly Xk(t) of the cells in

that area,

XkðtÞ ¼
X

i2Ak

xiðtÞ cosð/iÞ: ð2Þ

The anomaly time series of a cell i is weighted by the

cosine of the cell’s latitude (/i), to account for the cell’s

relative size.2 As a sum of zero-mean processes, a cumu-

lative anomaly is also zero-mean.

Figure 4 quantifies the relation between the size of the

areas (
P

i2Ak
cosð/iÞ) identified earlier in the HadISST data

set and the standard deviation of their cumulative anomaly.

Note that the relation is almost linear, at least excluding the

largest 3–4 areas. Exact linearity would be expected if all

cells had the same size, their anomalies had the same vari-

ance, and every pair of cells in the same area had the same

correlation. Even though these conditions are not true in

practice, it is interesting that the standard deviation of an

area’s cumulative anomaly is roughly proportional to its size.

The strength, or weight, of the link between two areas Ai

and Aj is captured by the covariance of the corresponding

cumulative anomalies Xi(t) and Xj(t). Specifically, every

2 When comparing data sets with different spatial resolution, the

anomaly of a cell should be normalized by the size of the cell in that

resolution.
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pair of areas Ai and Aj in the constructed network is con-

nected with a link of weight w(Ai, Aj),

wðAi;AjÞ,wðXi;XjÞ ¼ covðXi;XjÞ ¼ sðXiÞ sðXjÞ rðXi;XjÞ
ð3Þ

where s(Xi) is the standard deviation of the cumulative

anomaly Xi(t), while cov(Xi, Xj) and r(Xi, Xj) are the

covariance and correlation, respectively, of the cumulative

anomalies Xi(t) and Xj(t) that correspond to areas Ai and Aj.

Note that the weight of the link between two areas does not

depend only on their (normalized) correlation r(Xi, Xj), but

also on the ‘‘power’’ of the two areas, as captured by the

standard deviation of the corresponding cumulative

anomalies. Also, recall from the previous paragraph that

this standard deviation is roughly proportional to the area’s

size, implying that larger areas will tend to have stronger

connections. The link between two areas can be positive or

negative, depending on the sign of the correlation term.

Fig. 2 An example of the area identification algorithm. a 12-cell

synthetic grid. b The correlation matrix between cells (given as

input). c The area expansion process for a given s = 0.4. Cells shown

in red are selected to join the area (denoted by Ak). Cells 1,4,9 and 12

will not join Ak since they do not satisfy the s constraint in Eq. 1

Fig. 3 Identified areas in the HadISST 1979–2005 data set (s = 0.496). a The 176 areas identified by Part-1 of the area identification algorithm.

b The 74 ‘‘merged’’ areas after the execution of Part-2. c The CDF of area sizes (in number of cells) before and after the merging process
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Figure 5 presents the cumulative distribution function

(CDF) of the absolute correlation between the cumulative

anomalies of areas for four SST networks. As with the

correlations of the cell-level network, there is no clear

cutoff3 separating significant correlations from noise. For

this reason we prefer to not prune the weaker links between

areas. Instead, every pair of areas Ai and Aj is connected

through a weighted link and the resulting graph is complete.

4 Network metrics

We now proceed to define a few network metrics that are

used throughout the paper. A climate network N is defined

by a set V of areas A1; . . .; AjV j, representing the nodes of

the network, and a set of link weights, given by Eq. 3.

Because the network is a complete weighted graph, basic

graph theoretic metrics that do not account for link weights

(such as average degree, average path length, or clustering

coefficient) are not relevant in this context.

A first representation of the network can be obtained

through link maps. The link map of an area Ak shows the

weight of the links between Ak and every other area in the

network. Link maps provide a direct visualization of the

correlations, positive and negative, between a given area

and others in the system, often related to atmospheric

teleconnection patterns. For instance, Fig. 6 shows link

maps for the two largest areas identified in the HadISST

network in the 1979–2005 period. The first area has a clear

correspondence to the El Niño Southern Oscillation

(ENSO); indeed, the cumulative anomaly over that area

and most common indices that describe ENSO variability

are highly correlated (the correlation reaches 0.94 for the

Niño-3.4 index). The links of this ‘‘ENSO’’ area depict

known teleconnections and their strength. The second

largest area covers most of the tropical Indian Ocean and

represents the region that is most responsive to interannual

variability in the Pacific. It corresponds, broadly, to the

region where significant warming is observed during peak

El Niño conditions (Chambers et al. 1999).

Another metric is the strength of an area (also known as

weighted degree), defined as the sum of the absolute link

weights of that area,

WðAiÞ ¼
XV

j 6¼i

jwðAi;AjÞj ¼ sðXiÞ
XV

j 6¼i

sðXjÞjrðXi;XjÞj: ð4Þ

Note that anti-correlations (negative weights) also con-

tribute to an area’s strength. Figure 7 shows, for example,

the strength maps for two HadISST networks covering the

1950–1976 and 1979–2005 periods, respectively. Both the

geographical extent of areas and their strength display

differences in the two time intervals, particularly in the

North Pacific sector and in the tropical Atlantic (Miller

et al. 1994; Rodriguez-Fonseca et al. 2009).
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Fig. 5 CDF of the absolute correlation between area cumulative

anomalies for the HadISST reanalysis during the 1950–1976 and

1979–2005 periods, and for ERSST-V3 and NCEP during the

1979–2005 period

3 Imposing a threshold on the actual strength of the link (computed as

the covariance between the cumulative anomalies of two areas) would

be incorrect. For example, multiplying low correlations with large

standard deviations can produce links of significant weight.
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It is often useful to ‘‘peel’’ the nodes of a network in

successive layers of increasing network significance. For

weighted networks, we can do so through an iterative

process referred to as s-core decomposition (Van den

Heuvel and Sporns 2011). The areas of the network are

first ordered in terms of their strength. In iteration-1 of

the algorithm, the area with the minimum strength, say

Wmin, is removed. Then we recompute the (reduced)

strength of the remaining areas, and if there is an area

with lower strength than Wmin, it is removed as well.

Iteration-1 continues in this manner until there is no area

with strength less than Wmin. The areas removed in this

first iteration are placed in the same layer. The algorithm

then proceeds similarly with iteration-2, forming the

second layer of areas. The algorithm terminates when we

have removed all areas, say after K iterations. Finally, the

K layers are re-labeled as ‘‘cores’’ in inverse order, so

that the first order core consists of the areas removed in

the last iteration (the strongest network layer), while the

Kth order core consists of the areas removed in the first

iteration (the weakest layer). Figure 8 shows the top five

order cores for two HadISST networks, covering

1950-1976 and 1979–2005, respectively. Again, changes

in the relative role of areas are apparent in the North

Pacific and in the tropical Atlantic.

Visual network comparisons provide insight but quan-

titative metrics that summarize the distance between two

networks into a single number would be useful. A chal-

lenge is that the climate networks under comparison may

have a different set of areas, and it is not always possible to

associate an area of one network with a unique area of

another network.

We rely on two quantitative metrics: the adjusted Rand

index (ARI), which focuses on the similarity of two net-

works in terms of the identified areas, and the Area

Strength Distribution Distance, or simply Distance metric,

which considers the magnitude of link weights and thus

area strengths.

The (non-adjusted) Rand index is a metric that quantifies

the similarity of two partitions of the same set of elements

into non-overlapping subsets or ‘‘clusters’’ (Rand 1971).

Fig. 6 Link maps for two areas related to a ENSO and b the

equatorial Indian Ocean in the HadISST 1979–2005 network

(s = 0.496). The color scale represents the weight of the link

between the area shown in black and every other area in this SST

network

Fig. 7 Strength maps for two different time periods using the

HadISST data set. a 1950–1976 network, strength of ENSO area:

20.1 9 104; b 1979–2005 network, strength of ENSO area:

18.8 9 104

Fig. 8 Color maps depicting the top five order cores for the

a HadISST 1950–1976, and b HadISST 1979–2005 networks

Studying climate patterns

123

Author's personal copy



Every pair of elements that belong to the same cluster in

both partitions, or that belong to different clusters in both

partitions, contributes positively to the Rand index. Every

pair of elements that belong to the same cluster in one

partition but to different clusters in the other partition,

contributes negatively to the Rand index. The metric varies

between 0 (complete disagreement between the two parti-

tions) to 1 (complete agreement). A problem with the Rand

index is that two random partitions would probably give a

positive value because some agreement between the two

partitions may result by chance. The adjusted Rand index

(Hubert and Arabie 1985; Steinhaeuser and Chawla 2010)

ensures that the expected value of ARI in the case of

random partitions is 0, while the maximum value is still 1.

We refer the reader to the previous references for the ARI

mathematical formula.

In the context of our method, the common set of ele-

ments is the set of grid cells, while a partition represents

how cells are classified into areas (i.e., each area is a cluster

of cells). Cells that do not belong to any area are assigned

to an artificial cluster that we create just for computing the

ARI metric. We use the ARI metric to evaluate the simi-

larity of two networks in terms of the identified areas. This

metric, however, does not consider cell anomalies and cell

sizes, and so it cannot capture similarities or differences

between two networks in terms of link weights and area

strengths. Two networks may have some differences in the

number or spatial extent of their areas, but they can still be

similar if those ‘‘ambiguously clustered’’ cells do not have

a significant anomaly compared to their area’s anomaly.

Also, two networks can have similar areas but the magni-

tude of their area anomalies can differ significantly, caus-

ing significant differences in link weights and thus area

strengths. Further, the ARI metric cannot be used to

compare data sets with different resolution because the

underlying set of cells in that case would be different

between the two networks.

For these reasons, together with the ARI, we rely on a

distance metric that is based on the area strength distribu-

tion of the two networks. The strength of an area, in effect,

summarizes the combined effect of the area’s spatial scope

(which cells participate in that area), and of the anomaly

and size of those cells.

Given two networks N and N0 with V and V0 B V areas,

respectively, we first add V - V0 ‘‘virtual’’ areas of zero

strength in network N0 so that the two networks have the

same number of nodes. Then, we rank the areas of each

network in terms of strength, with Ai being the i’th highest-

strength area in network N. Figure 9a shows the ranked

area strength distributions for the HadISST networks cov-

ering 1950–1976 and 1979–2005 periods. The distance

d(N, N0) quantifies the similarity between two networks in

terms of their ranked area strength distribution,

dðN;N 0Þ ¼
XV

i¼1

jWðAiÞ �WðA0iÞj ð5Þ

To normalize the previous metric, we introduce the relative

distance D(N, N0). Specifically, we construct an ensemble

of randomized networks Nr with the same number of areas

and link weight distribution as network N, but with random

assignment of links to areas. The random variable d(N, Nr)

represents the distance between N and a random network

Nr, while dðN;NrÞ denotes the sample average of this

distance across 100,000 such random networks. The

relative distance D(N, N0) is then defined as

DðN;N 0Þ ¼ dðN;N 0Þ
dðN;NrÞ

: ð6Þ

Note that D(N, N0) represents an ordered relation, from

network N to N0. A relative distance close to 0 implies that

N0 is similar to N in terms of the allocation of link weights

to areas. As the relative distance approaches 1, N0 may

have a similar link weight distribution with N, but the two

networks differ significantly in the assignment of links to

areas. The relative distance can be larger than 1 when N0’s
link weight distribution is significantly different than that

of N.
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Fig. 9 a Distribution of ranked area strengths for two networks

constructed using the HadISST data set over the periods 1950–1976

and 1979–2005, respectively. b Distance D(N, Nc) and ARI(N, Nc)

between the HadISST 1979–2005 network and networks constructed

after the addition of white Gaussian noise in the same data set
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Two networks may be similar in terms of the identified

areas (high ARI) but with large distance (high D) if the

strength of at least some areas is significantly different

across the two networks (perhaps due to the magnitude of

the underlying cell anomalies). In principle, it could also be

that two networks have similar ranked area strength dis-

tributions (low D) but significant differences in the number

or spatial extent of the identified areas (low ARI). Conse-

quently, the joint consideration of both metrics allows us to

not only evaluate or rank pairs of networks in terms of their

similarity, but also to understand which aspects of those

pairs of networks are similar or different.

We can also map a distance D(N, N0) to an amount of

White Gaussian Noise (WGN) that, if added to the climate

field that produced N, will result in a network with equal

distance from N. In more detail, let s2(xi) be the sample

variance of the anomaly time series xi(t) in the climate field

under consideration. We construct a perturbed climate field

by adding WGN with variance c 9 s2(xi) to every xi(t),

where c is referred to as the noise-to-signal ratio. Then, we

construct the corresponding network Nc, and D(N, Nc) is its

distance from N. A given distance D(N, N0) can be mapped

to a noise-to-signal ratio c when D(N, N0) = D(N, Nc).

Similarly, a given ARI value ARI(N, N0) can be mapped to

noise-to-signal ratio c such that ARI(N, N0) = ARI(N, Nc).

Figure 9b shows how c affects D(N, Nc) and ARI(N, Nc)

when the network N corresponds to the HadISST 1979–

2005 reanalysis. As a reference point, note that a low noise

magnitude, say c = 0.1, corresponds to distance D = 0.12

and ARI = 0.68.

Finally, we emphasize that the ARI and D metrics focus

on the global scale. Even if two networks are quite similar

according to these two metrics, meaningful differences at

the local scale of individual areas may still exist. The study

of regional climate effects may require an adaptation of

these metrics.

5 Robustness analysis

Analyzing climate data poses many challenges: measure-

ments provide only partial geographical and temporal

coverage, while the collected data are subject to instru-

mental biases and errors both random and systematic.

Greater uncertainties exist in general circulation model

outputs: climate simulations are dependent on modeling

assumptions, complex parameterizations and implementa-

tion errors. An important question for any method that

identifies topological properties of climate fields is whether

it is robust to small perturbations in the input data, the

method parameters, or in the assumptions the method is

based on. If so, the method can provide useful information

on the climate system despite uncertainties of various

types. In this section, we examine the sensitivity of the

inferred networks to deviations in the input data, the

parameter s, and certain methodological choices. We

quantify sensitivity by computing the D and ARI metrics

from the original network to each of the perturbed

networks.

5.1 Robustness to additive white Gaussian noise

As described in Sect. 4, a simple way to perturb the input

data is to add white Gaussian noise to the original climate

field time series. The magnitude of the noise is controlled

by the noise-to-signal ratio c. The distance D and ARI

from the original network N to the ‘‘noisy’’ networks Nc are

shown in Fig. 9b for the HadISST reanalysis over

1979–2005. To visually illustrate how noise affects the

identified areas, and in particular their strength, Fig. 10

presents strength maps for two values of c; the area

strengths should be compared with Fig. 7b. Although some

differences exist, the ENSO area strength is comparable to

that of the original network, and the hierarchy (in terms of

strength) in the three basins is conserved.

5.2 Robustness to the resolution of the input data set

All data sets compared in this paper have been spatially

interpolated to the lowest common resolution. Here we

investigate the robustness of the identified network to the

resolution of the input data set. To do so, consider the

HadISST reanalysis over the 1979–2005 period and com-

pare the network discussed so far, constructed using data

Fig. 10 Strength maps for two perturbations of the HadISST

1979–2005 data set using white Gaussian noise. a c = 0.05, strength

of ENSO area: 18.0 9 104. b c = 0.10, strength of ENSO area:

19.1 9 104
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interpolated on a 2� lat 9 2.5� lon grid, with two networks

based on a lower (4� lat 9 4� lon) and a higher (1� lat 9 2�
lon) resolution realization of the same reanalysis. Figure 11

shows strength maps for the two new networks. As we

lower the resolution the total number of areas decreases,

and the areas immediately surrounding the ENSO-related

area get weaker. Nonetheless, the hierarchy of area

strengths in the three basins is preserved, and differences

are small, as quantified by the distance metric. The distance

from the default to the high resolution network is D(N,

N0) = 0.10 (c = 0.07). The distance from the default to the

low resolution network is D(N, N0) = 0.11 (c = 0.10). As

previously mentioned, the ARI cannot be used to compare

data sets with different spatial resolution.

5.3 Robustness to the selection of s

Recall that the parameter s represents the threshold for the

minimum average pair-wise correlation between cells of

the same area. Even though we provide a heuristic (see

‘‘Appendix 1’’) for the selection of s, which depends on the

given data set, it is important to know whether small

deviations in s have a major effect on the constructed

networks.

Considering again the HadISST 1979–2005 reanalysis,

Fig. 12 presents the relative distance and ARI from the

original network N constructed using s = 0.496 (it corre-

sponds to a significance level a = 0.1 %), to networks Ns

constructed using different s values. We vary s by ± 10 %,

in the range 0.45–0.55. This corresponds to a large change,

roughly an order of magnitude, in the underlying signifi-

cance level a.

Figure 13 visualizes strength maps for the two extreme

values of s in the previous range. While some noticeable

differences exist, the overall area structure appears robust

to the choice of s. By increasing s, we increase the required

degree of homogeneity within an area, and therefore the

resulting network will be more fragmented, with more

areas of smaller size and lower strength, and vice versa for

decreasing s.

5.4 Robustness to the selection of the correlation

metric

The input to the network construction process is a matrix of

correlation values between all pairs of cells. So far, we

Fig. 11 Strength maps for the HadISST 1979–2005 network at three

different resolutions. a Low resolution network, (4� lat 9 4� lon),

strength of ENSO area: 18.2 9 104. b Default resolution network, (2�
lat 9 2.5� lon), strength of ENSO area: 18.8 9 104. c High resolution

network, (1� lat 9 2� lon), strength of ENSO area: 18.2 9 104
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have relied on Pearson’s correlation coefficient, which is a

linear dependence measure between two random variables.

Any other correlation metric could be used instead. To

verify that the properties of the resulting network do not

depend strongly on the selected correlation metric, we use

here the non-parametric Spearman’s rank coefficient to

compute cell-level correlations.

Figure 14 shows the strength map for the HadISST

1979–2005 network using Spearman’s correlation metric.

Again, while small changes are apparent, the size and

shape of the major areas and their relative strength are

unaltered. D(N, N0) = 0.08 and ARIðN;N 0Þ ¼ 0:76; where

N is the network shown in Fig. 7b; both metrics correspond

to c = 0.05.

We have performed similar robustness tests using pre-

cipitation data obtaining comparable results.

6 Applications

We now apply the proposed method to the climate data sets

described in Sect. 2 to illustrate that network analysis can

be successfully used to compare data sets and to validate

model representations of major climate areas and their

connections. We proceed by constructing networks for

three different SST reanalyses and two precipitation data

sets. We then examine the relation between two different

climate fields (SST and precipitation) introducing a

regression of networks technique. Finally, we analyze the

network structure of the SST fields from two coupled cli-

mate models participating in CMIP5.

6.1 Comparison of SST networks

Here we investigate the network properties and metrics for

three SST reanalyses focusing on the 1979–2005 period.

Two of them, HadISST and ERSST-V3, use statistical

methods to fill sparse SST observations; HadISST imple-

ments a reduced space optimal interpolation (RSOI) tech-

nique, while ERSST-V3 adopts a method based on

empirical orthogonal function (EOF) projections. NCEP/

NCAR uses the Global Sea Ice and Sea Surface Temper-

atures (GISST2.2) from the UK. Meteorological Office

until late 1981 and the NCEP Optimal Interpolation (OI)

SST analysis from November 1981 onward. The GISST2.2

is based on empirical orthogonal function (EOF) recon-

structions (Hurrell and Trenberth 1999). The OI SST

analysis technique combines in situ and satellite-derived

SST data (Reynolds and Smith 1994). To minimize the

possibility of artificial trends, and the bias introduced by

merging different data sets, GISST2.2 data are modified to

include an EOF expansion based on the OI analysis from

January 1982 to December 1993.

In Fig. 15, we quantify the differences between the three

reanalyses showing correlation maps between the detr-

ended DJF SST anomaly time series for HadISST and

ERSST-V3, HadISST and NCEP, and ERSST-V3 and

NCEP. The patterns that emerge in the all correlation maps

are similar. Correlations are generally higher than 0.9 in the

equatorial Pacific, due to the almost cloud free sky and to

the in-situ coverage provided since the mid 80s’ first by the

Tropical Ocean Global Atmosphere (TOGA) program, and

then by the Tropical Atmosphere Ocean (TAO)/Triangle

Trans-Ocean Buoy Network (TAO/TRITON) program

(Vidard et al. 2007). Good agreement between reanalyses

is also found in the north-east Pacific, in the tropical

Atlantic and in the Indian and Pacific Oceans between 10�S

and 30�S. Correlations decrease to approximately 0.7 in the

equatorial Indian Ocean and around Indonesia, where cloud

coverage limits satellite retrievals, and reach values as

small as 0.2–0.3 in the Labrador Sea, close to the Bering

Fig. 13 Strength maps for the HadISST 1979–2005 network using

two values of the parameter s. The ‘‘default’’ value is s = 0.496,

corresponding to a = 0.1 % (see ‘‘Appendix 1’’). a s = 0.45, strength

of ENSO area: 18.7 9 104. b s = 0.55, strength of ENSO area:

18.6 9 104

Fig. 14 Strength map for the HadISST 1979–2005 network using

Spearman’s correlation; strength of ENSO area: 18.5 9 104
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Strait and south of 40�S, particularly in the Atlantic and

Indian sectors, due to persistent clouds and poor avail-

ability of in-situ data. North of 60�N and south of 60�S the

presence of inadequately sampled sea-ice and intense cloud

coverage reduce even further the correlations, that attain

non-significant values almost everywhere. At those lati-

tudes any comparison between those reanalyses and their

resulting networks is meaningless given that it would not

possible to identify a reference data set.

The strength maps constructed using these data sets

show differences in all basins, and suggest that the network

analysis performed allows for capturing more subtle

properties than correlation maps (Fig. 16). To begin with

the strongest area, corresponding to ENSO, we notice that

it has a similar shape in HadISST and NCEP, but it extends

further to the west in ERSST-V3. Its strength is about 10 %

higher in NCEP compared to the other two reanalyses. In

HadISST, the equatorial Indian Ocean appears as the sec-

ond strongest area, followed by areas surrounding the

ENSO region in the tropical Pacific and by the tropical

Atlantic. In ERSST-V3 the area comprising the equatorial

Indian Ocean has shape and size analogous to HadISST,

but 30 % weaker, and it is closer in strength to the area

covering the warm-pool in the western tropical Pacific.

Also the areas comprising the tropical Atlantic are slightly

weaker than in the other two data sets. HadISST and

ERSST-V3 display a similar strength hierarchy, with the

Pacific Ocean being the basin with the strongest (ENSO-

like) area, followed by the Indian, and finally by the

Atlantic Ocean. In NCEP all tropical areas (except the area

corresponding to the ENSO region) have similar strength

and the hierarchy between Indian and Atlantic Oceans is

inverted. Also, the equatorial Indian Ocean appears sub-

divided in several small areas.

Differences in strength maps are also reflected in the

s-core decomposition (Fig. 17) and in the links between the

ENSO-related areas and other areas in the network

(Fig. 18). In HadISST and ERSST-V3, the first order core

is located in the tropical and equatorial Pacific and Indian

Ocean, while in NCEP it is limited to the Pacific. As a

consequence the strength of the link between the ENSO-

related area and the Indian Ocean is much stronger in the

first two reanalyses than in NCEP. In HadISST, the ENSO-

related and Indian Ocean areas are separated by regions of

higher order in the western Pacific, organized in the char-

acteristic ‘‘horse-shoe’’ pattern. In the other two reanalyses

the first order core extends along the whole Pacific equa-

torial band and includes the horse-shoe areas. In

Fig. 15 Pearson correlation maps between the SST anomaly time

series in all pairs of three reanalyses data sets over the 1979–2005

period in boreal winter (DJF). Correlations between a HadISST and

ERSST-V3; b HadISST and NCEP; c NCEP and ERSST-V3

Fig. 16 Strength maps for networks constructed based on a HadISST

(ENSO area strength 18.8 9 104); b ERSST-V3 (ENSO area strength

17.6 9 104); c NCEP (ENSO area strength 21.0 9 104) reanalyses. In

all networks the period considered is 1979–2005
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correspondence, the links between the ENSO-like and the

western Pacific areas are, in absolute value, weaker than

the link between ENSO and the Indian Ocean in HadISST,

but comparable in ERSST-V3. NCEP shows significantly

weaker links overall, but the highest link weights are found

between ENSO and the western Pacific.

To conclude the comparison of different SST reanalyses,

we measure the distance and ARI values from HadISST to

the other two networks. The distance from HadISST to

ERSST-V3 is small, D(N, N0) = 0.16, mapped to a noise-

to-signal ratio c = 0.15. The strongest areas show indeed a

good correspondence in strength and size in the two data

sets, even if the shapes of the ENSO-related areas differ.

The distance from HadISST to NCEP, D(N, N0) = 0.29 with

c = 0.35, is greater, as expected from the previous figures,

given that all areas except of the ENSO-related one appear

significantly weaker, while the ENSO area is stronger than

in HadISST. NCEP is also penalized because of the dif-

ferences, compared to HadISST, in the strength (and size)

of areas over the Indian Ocean and in the horse-shoe pat-

tern. Recall that D compares areas based on their strength

ranking, independent on their geographical location. In this

respect, the two strongest areas represented by ENSO and

Indian Ocean in HadISST are replaced by ENSO and the

North Pacific extension of the horse-shoe region in NCEP.

The ARI metric, on the other hand, ranks NCEP closer to

HadISST than ERSST-V3 (ARI = 0.59 for NCEP and

ARI = 0.54 for ERSST-V3, mapped to c = 0.35 and 0.45,

respectively). The shape of the ENSO-related area and of

areas in the tropical Atlantic and south of 30� S are indeed

in better agreement between HadISST and NCEP, despite

having different strengths.

The previous discussion illustrates that D and ARI

should be considered jointly, as they provide complemen-

tary information about the similarity and differences

between two networks.

6.2 Network changes over time

Network analysis can also be a powerful tool to detect and

quantify climate shifts. The insights that network analysis

can offer, compared to more traditional time series analysis

methods, are related to the detection of changes in network

metrics that are associated with specific climate modes of

variability, regional or global. Topological changes may

include addition or removal of areas, significant fluctua-

tions in the weight of existing links (strengthening and

weakening of teleconnections), or variations in the relative

significance of different areas, quantified by the area
Fig. 17 Top five order cores in a HadISST; b ERSST-V3; c NCEP.

The period considered is 1979–2005 in all cases

Fig. 18 Links between the ENSO-like area shown in black and all

other areas in the three reanalyses. a HadISST, b ERSST-V3 and

c NCEP networks
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strength distribution. For instance, Tsonis and co-authors

have built a network of four interacting nodes using the

major climate indices, the North Atlantic Oscillation

(NAO), ENSO, the North Pacific Oscillation (NPO) and the

Pacific Decadal Oscillation (PDO), and suggested that

those climate modes of variability tend to synchronize with

a certain coupling strength (Tsonis et al. 2007). Climate

shifts, including the one recorded in the north Pacific

around 1977 (Miller et al. 1994), could result from changes

in such coupling strength.

Here we compare the climate networks constructed on

the HadISST data set over the periods 1950–1976 and

1979–2005 to illustrate that the proposed methodology

may also provide insights into the detection of climate

shifts. Instead of simply comparing different periods, it is

possible to use a sliding window in the network inference

process to detect significant changes or shifts without prior

knowledge; we will explore this possibility in future work.

Strength maps for the two networks were shown in

Fig. 7, while the top five order cores were shown in Fig. 8.

The links from the ENSO-related area and from the

equatorial Indian Ocean during the 1950–1976 period are

presented in Fig. 19, and they can be compared with Fig. 6.

When the 1979–2005 period is compared to the earlier

period, we note a substantial strength decrease for the area

covering the south tropical Atlantic and a significant

weaker link between this area and ENSO. This suggests an

alteration in the Pacific-Atlantic connection, which indeed

has been recently pointed out by Rodriguez-Fonseca et al.

(2009) and may be linked to the Atlantic warming

(Kucharski et al. 2011). Additionally, there is a change in

the sign of the link weight between the ENSO area and the

area off the coast of Alaska in the north Pacific, which is

related to the change in sign of the PDO in 1976–1977

(Miller et al. 1994; Graham 1994).

Despite those differences, the distance from the

1979–2005 HadISST network to the 1950–1976 network is

less than the distance from the former to any of the other

reanalyses investigated earlier: D(N, N0) = 0.13 with noise

c = 0.10. The ARI, on the other hand, is 0.55 (c = 0.40).

The ARI value reflects, predominantly, the changes in

shape and size of the ENSO-related areas and of the areas

over the North Atlantic and North Pacific.

6.3 Comparison of precipitation networks

One of the advantages of the proposed methodology is its

applicability, without modifications, to any climate vari-

able. As an example, in the following we focus on pre-

cipitation, chosen for having statistical characteristics very

different from SST due to its intermittency. We investigate

the network structure of the CPC Merged Analysis of

Precipitation (CMAP) (Xie and Arkin 1997) and ERA-

Interim reanalysis (Dee et al. 2011). Both data sets are

available from 1979 onward. CMAP provides gridded,

monthly averaged precipitation rates obtained from satel-

lite estimates. ERA-Interim is the outcome of a state-of-

the-art data assimilative model that assimilates a broad set

of observations, including satellite data, every 12 hours. As

in the case of SSTs, we present the precipitation networks

focusing on boreal winter (December to January) based on

detrended anomalies from 1979 to 2005. Figure 20 shows

the map of area strengths for both data sets, Fig. 21 pre-

sents the top five order cores, while Fig. 22 depicts links

from the strongest area in the two networks.

Fig. 19 Links for the HadISST network over 1950–1976 from the

(a) ENSO-related area, and b the equatorial Indian Ocean area (in
black in the two panels)

Fig. 20 Precipitation networks. Area strength map in a CMAP

(equatorial Pacific area strength 49.4 9 104), and b ERA-Interim

(equatorial area strength 41.0 9 104)
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The precipitation network is, not surprisingly, charac-

terized by smaller areas, compared to SSTs. Precipitation

time series are indeed highly intermittent, resulting in

weaker correlations between grid cells. The areas with the

highest strength are concentrated in the tropics, where deep

convection takes place. The strongest area is located in the

equatorial Pacific in correspondence with the center of

action of ENSO. In CMAP, this area is linked with strong

negative correlation to the area covering the warm-pool

region, and together they represent the first order core of

this network. The second order core covers the eastern part

of the Indian Ocean and eastern portion of the South Pacific

Convergence Zone (SPCZ). Both those regions are strongly

affected by the shift in convection associated with ENSO

events. In the reanalysis, the warm-pool area extends pre-

dominantly into the northern hemisphere, and its strength

and size, as well as the weight of its link with the ENSO-

related area, are reduced. Additionally, the Indian Ocean is

subdivided in small areas all of negligible strength, simi-

larly to what seen for NCEP SSTs, indicating that the

atmospheric teleconnection between ENSO and the eastern

Indian Ocean that causes a shift in convective activity over

the Indian basin (see e.g. Klein et al. (1999); Bracco et al.

(2005) is not correctly captured by ERA-Interim. The

s-core decomposition does not include in the second order

core any area in the Indian Ocean, but is limited to two

areas to the north and to the south of the ENSO-related one.

The distance from the CMAP network to the ERA-

Interim network is D(N, N0) = 0.21, with c = 0.25, while

the ARI value is 0.49, with c = 0.45. These values reflect

larger differences compared to the SST networks we pre-

sented earlier, but precipitation is known to be one of the

most difficult fields to model, even when assimilating all

available data, due to biases associated with the cloud

formation and convective parameterization schemes

(Ahlgrimm and Forbes 2012). In particular D is affected by

the significant difference in the strength and size of the area

over the warm-pool, and of the one between the ENSO-

related area and the warm-pool, while the ARI is affected

by the difference in the partitions over the warm-pool and

most of the Atlantic and Indian basins.

6.4 Regression between networks

So far we have shown applications of network analysis

considering one climate variable at a time. In climate sci-

ence it is often useful to visualize the relations between two

or more variables to understand, for example, how changes

in sea surface temperatures may impact rainfall. A simple

statistical tool that highlights such relations is provided by

regression analysis. Here we apply a similar approach

using climate networks.

Consider two climate networks Nx and Ny, constructed

using variables x(t) and y(t), respectively. The relation

between an area of Nx and the areas of Ny can be quantified

based on the cumulative anomaly of each area, using the

earlier link weight definition (see Eq. 3). Similarly, a link

map for an area Ai 2 Vx can be constructed based on the

link weights between the area Ai and all areas Aj 2 Vy.

For instance, we construct a network linking the area

that corresponds to ENSO in the HadISST reanalysis to the

areas of the CMAP precipitation network for the period

1979–2005 in boreal winter. Both networks are dominated

by the ENSO area and it is expected that this exercise will

portrait the ENSO teleconnection patterns. Results are

shown in Fig. 23. The regression of the rainfall network

Fig. 21 Top five order cores in a CMAP, and b ERA-Interim

Fig. 22 Link maps from the strongest area (in black) for the two

precipitation reanalysis data sets. a CMAP; b ERA Interim
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onto the ENSO-related area in the SST reanalysis visual-

izes the well known shift of convective activity from the

warm-pool into the central and eastern equatorial Pacific

during El Niño. For positive ENSO episodes, negative

precipitation anomalies concentrate in the warm-pool and

extend to the SPCZ and the eastern Indian Ocean. Weak,

positive correlations between SST anomalies in the equa-

torial Pacific and precipitation are seen over the western

Indian Ocean and east Africa, part of China, the Gulf of

Alaska and the north-east USA. This approach is only

moderately useful on reanalysis or observational data,

where known indices can be used to perform regressions

without the need of constructing a network. Its extension to

model outputs, however, is advantageous compared to

traditional methods, because it does not require any ad-hoc

index definition, but relays on areas objectively identified

by the proposed network algorithm.

6.5 CMIP5 SST networks

We now compare the HadISST network with networks

constructed using SST anomalies from two coupled models

participating in CMIP5. Our goal is to exemplify the

information that our methodology can provide when

applied to model outputs. We do not aim at providing an

exhaustive evaluation of the model performances, which

would be beyond the scope of this paper. We analyze the

SST fields of two members of the CMIP5 historical

ensemble from the GISS-E2H and HadCM3 models over

the period 1979–2005. Historical runs aim at reproducing

the observed climate from 1850 to 2005 including all

forcings. We show strength maps (Fig. 24), top five order

cores (Fig. 25), and link maps for the area that is related to

ENSO (Fig. 26).

In all model integrations the ENSO-like area extends too

far west into the warm-pool region, and is too narrow in the

simulated width, in agreement with the recent analysis by

Zhang and Jin (2012). The warm-pool is therefore not

represented as an independent area anticorrelated to the

ENSO-like one. In the GISS-E2H model the strength of the
ENSO area is underestimated compared to the HadISST

(see Fig. 16a), but the overall size of the area is larger than

observed. Both the extent and strength of the Indian Ocean

area around the equator and of the areas forming the horse-

shoe pattern are reduced with respect to HadISST. Links in

GISS-E2H are overall weaker than in the reanalysis (see

Fig. 18a), the role of the Atlantic is slightly overestimated,

and the high negative correlations between the ENSO

region and the areas forming the horse-shoe patterns are

not captured. In HadCM3, on the other hand, the strength

of the ENSO area is comparable or greater than in the

observations. In this model, areas are more numerous and

fragmented than in the reanalysis, and in several cases

Fig. 23 Link maps from the ENSO-like area in HadISST data set to

all areas in the CMAP data set, considering the 1979–2005 period.

Values greater than |1 9 105| are saturated

Fig. 24 Strength maps for two members of the GISS-E2H and

HadCM3 ‘‘historical’’ ensemble. a GISS-E2H run 1 (ENSO area

strength 9.8 9 104); b GISS-E2H run 2 (ENSO area strength

10.0 9 104); c HadCM3 run 1 (ENSO area strength 23.3 9 104)

and d HadCM3 run 2 (ENSO area strength 16.9 9 104)
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confined within narrow latitudinal bands. This bias may

result from too weak meridional currents and/or weak trade

wind across all latitudes, as suggested by Zhang et al.

(2012). HadCM3 shows also erroneously strong links

between the modeled ENSO area and the Southern Ocean,

particularly in the Pacific and Indian sectors, as evident in

the s-core decomposition and link maps. The link strengths

in HadCM3 are closer to the observed, but some areas in

the southern hemisphere play a key role, unrealistically.

To conclude this comparison we present the distance

from the HadISST reanalysis to those two models, and the

corresponding ARI values. Table 1 summarizes this com-

parison. D(N, N0) from HadISST to the two GISS-E2H

integrations is 0.29 and 0.37, with c = 0.35 and c = 0.45,

respectively. D(N, N0) from HadISST to the two HadCM3

runs is 0.56 and 0.35, with c = 0.70 and c = 0.40. One of

the GISS member networks displays a significantly smaller

distance from HadISST than both networks build on the

HadCM3 runs. This is due to the fact that in all networks

considered the ENSO-like area overpowers all others in

terms of strength and, furthermore, there exist a few other

strong areas (weaker than the ENSO-related area by less

than one order of magnitude). Focusing on the extent of the

areas in the GISS member with smaller D we observe

striking differences relative to the base HadISST network:

the GISS model is unable to reproduce the horse-shoe

pattern, and it splits the tropical Indian Ocean in two areas.

However, it reproduces quite well the overall size of most

areas, and the strength of the largest two in the tropics,

despite inverting the relative strengths of the Indian Ocean

and of the south tropical Atlantic. The latter in GISS and

the former in HadISST have comparable size and strength,

Fig. 25 Top five order cores identified in the SST anomaly networks

for a, b two GISS-E2H ensemble members and c, d two HadCM3

integrations
Fig. 26 Link maps from the ENSO-like area in the a, b GISS-E2H

and c, d HadCM3 models
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and D cannot account for their different location. The

HadCM3 networks, on the other hand, are too fragmented

and characterized by unrealistically strong areas in the

Southern Ocean, and they are penalized by D for not

capturing properly the size of the strongest areas. The ARI

values are 0.46 and 0.48 for the two GISS members, and

0.43 and 0.45 for the two HadCM3 integrations. GISS

again outperforms HadCM3 due to better representation of

the shape of most areas.

As already mentioned, the relative distance and

ARI metrics, while individually unable to quantify the

differences and similarities between networks, can be

jointly used successfully to rank several networks with

respect to a common reference. Two networks are similar if

both ARI is large and D is small. If any of these two

conditions is not met, a further analysis of the other metrics

we have introduced can provide useful information on the

differences between the data sets under consideration.

7 Discussion and conclusions

We developed a novel method to analyze climate variables

using complex network analysis. The nodes of the network,

or areas, are formed by clusters of grid cells that are highly

homogeneous to the underlying climate variable. These

areas can often be mapped into well known patterns of

climate variability.

The network inference algorithm relies on a single

parameter s that determines the degree of homogeneity

between cells in an area. The requirement of only one

parameter, combined with the fact that no link pruning in

the underlying cell-level network is imposed, adds

robustness to the area-level network’s structure and makes

the comparison of different networks more reliable.

The constructed climate networks are complete weigh-

ted graphs. In effect, our network framework allows for

investigating and visualizing the relative strength of node

interactions, which can be associated with teleconnection

patterns. The inferred networks are robust under random

perturbations when adding noise to the anomaly time series

of the climate variable under investigation, to small chan-

ges in the selection of s, to the choice of the correlation

metric used in the inference algorithm, and to the spatial

resolution of the input field.

In this paper we constructed networks for a suite of SST

and precipitation data sets, and we analyzed them with a set

of weighted metrics such as link maps, area strength and s-

core decomposition. Link maps enable us to visualize all

statistical relationships between areas, while strength maps

highlight the relative importance of those relationships,

identifying major climate patterns. The s-core decompo-

sition, on the other hand, identifies the backbone structure

of a network, clustering areas into layers of increasing

significance. Finally, we quantified the degree of similarity

between different networks using the the adjusted Rand

index metric and a newly introduced ‘‘distance metric’’,

based on the area strength distribution.

After analyzing three SST reanalyses and two precipi-

tation data sets, we investigated the network structure of

the SST fields generated by two CMIP5 models, GISS-

E2H and HadCM3, focusing on SST anomalies. We visu-

alized model biases in the underlying network topology

and in the spatial expression of patterns, and we quantified

the distance between model outputs and reanalyses. We

found significant differences between model and observa-

tional data sets in the shape and relative strength of areas.

The most striking biases common to both models are the

excessive longitudinal extension of the area corresponding

to ENSO, and the inability to represent the horse-shoe

pattern in the western tropical Pacific. Links are generally

weaker than observed in GISS-E2H, but the relative

strength, shape and size of the main areas are in reasonable

agreement with the reanalyses. The HadCM3 network, on

the other hand, is closer to observations in the absolute

strength of its areas, but the areas are too numerous in the

tropics and unrealistically strong nodes are found in the

South Pacific. In the near future, we aim at providing a

comprehensive comparison of CMIP5 outputs to the cli-

mate community by extending our analysis to a much

larger number of models.

In this work we limited our analysis to linear and zero-

lag correlations. The methodology presented, however,

could be generalized to include the analysis of nonlinear

phenomena and non-instantaneous links, by introducing

nonlinear correlation metrics, such as mutual information

or the maximal information coefficient (Reshef et al.

2011), and time-lags. Additionally, the set of metrics pro-

posed can be enhanced to capture more complex relation-

ships in the underlying network.

Table 1 D and ARI from HadISST (1979–2005) to reanalyses,

GISS-E2H and HadCM3, and corresponding noise-to-signal ratios c

Dataset D c (D) ARI c (ARI)

HadISST 1950-1976 0.13 0.10 0.55 0.40

ERSST-V3 0.16 0.15 0.54 0.45

NCEP 0.29 0.35 0.59 0.35

GISS run 1 0.29 0.35 0.46 0.60

GISS run 2 0.37 0.45 0.48 0.55

HadCM3 run 1 0.56 0.70 0.43 0.70

HadCM3 run 2 0.35 0.40 0.45 0.60
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Appendix 1: Selection of threshold s

The threshold s is the only parameter of the proposed

network construction method. It represents the minimum

average pair-wise correlation between cells of the same

area, as shown in Eq. 1. Intuitively, s controls the mini-

mum degree of homogeneity that the climate field should

have within each area. The higher the threshold, the higher

the required homogeneity, and therefore the smaller the

identified areas.

Throughout this paper, we select s based on the fol-

lowing heuristic. First, we apply the one-sided t test for

Pearson correlations at level a and with -2 degrees of

freedom (recall that T is the length of the anomaly time

series) to calculate the minimum correlation value ra that is

significant at that level (Rogers 1969). For example, with

a = 1 % and T = 81 (corresponding to 27 years of SST

montly DJF averages), we get ra = 0.34.

Instead of prunning any correlations r(xi, xj) that are

below ra, we estimate the expected value of only those

correlations that are larger than ra,

�ra,E½rðxi; xjÞ; rðxi; xjÞ[ ra� ð7Þ

For a set of k randomly chosen cells that have statistical

significant correlations (at level a) between them, �ra is

approximately equal, for large k, to their average pair-wise

correlation. A climate area, however, is not a set of randomly

chosen cells, but a geographically connected region. So, we

require that the average pair-wise correlation of cells that

belong to the same area should be higher than �ra, i.e.,

s ¼ �ra ð8Þ

Note that s is independent of the size of an area, but it

depends on both a and on the distribution of pair-wise

correlations r(xi, xj).

Appendix 2: Pseudocode of area identification

algorithm

Below we present the pseudocode for the area identifica-

tion algorithm used in this paper.
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